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and the space H* +C

By SHELDON AXLER, I. DAVID BERG, NICHOLAS JEWELL,
and ALLEN SHIELDS*

1. Introduction

Let X denote a Banach space, let £(X) denote the set of all operators
(bounded linear transformations) on X, and let X' (X) denote the set of all
compact operators on X (recall that an operator is said to be compact if the
image of the unit ball has a compact closure). The essential norm || T'||, of
an operator T is the distance to the compact operators:

|| T]|, =inf{|T — K||: Ke X(X)}.

In 1965 Gohberg and Krein showed that this infimum is attained when
X is a Hilbert space (see [16], Chap. II, Section 7, especially the proof of
Cor. 7.1). However, they did not state this result explicitly and it was
rediscovered in 1971 by Holmes and Kripke [21]. Independently, in 1972
Alfsen and Effros [4] introduced the notion of M-ideal in a Banach space,
and they proved that if a subspace is an M-ideal, then for each element in
the Banach space there exists a closest element in the subspace (see [4, Cor.
5.6]). In 1973 Hennefeld [18] showed that if X is any of the spaces c,, I
(1 < p < ), then K(X) is an M-ideal in £(X); he did not, however, use this
terminology and did not point out the connection with approximation theory.
This was done in 1975 by Holmes, Scranton, and Ward [22]. They also
showed that when dealing with M-ideals one does not have uniqueness of
the element of best approximation.

Recently Mach and Ward [29] have given a constructive proof that each
operator on I? (1 < p < o) has a closest compact operator. The case p =1
was handled by Lau [28] by another method; in addition he showed that
K (I") is not an M-ideal in £(I*). For the case p = o, Smith and Ward [37]
showed that J(I°) is not an M ideal in £(I*). For further results see [3],
[10], [14], [15], [23], [27], [39], and [40].
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In Section 2 we present a technique for producing closest compact
operators of a certain form. For example, we show that every operator on
I? (1 < p < =) whose matrix has all positive entries has a closest compact
operator whose matrix also has only positive entries. A key ingredient is
an inequality, and it seems to be of interest to identify those Banach spaces
for which this Basic Inequality is valid.

In Section 3 we discuss the function space H= + C and apply the results
of Section 2 to answer the question of whether each function f in L= has a
closest element in H* + C. In addition, we show that this closest element
is never unique for f¢ H* + C; using this we show that the unit ball of the
quotient space L™/(H* + C) has no extreme points.

2. The existence of a closest compact operator

In this section we present a method for obtaining closest compact
operators. In the next section these results are used to study the function
space H> + C.

Recall that a sequence {4,} € £(X) is said to converge to 0 in the strong
operator topology (written 4, —0 (SOT)) if || A,x|| — 0 for each vector z
in X.

Definition. A Banach space X is said to satisfy the Basic Inequality if
for each Te £(X) and each sequence {4,} € £(X) such that 4, —0 (SOT)
and Ay — 0 (SOT) the following is true: for each ¢ > 0, there exists N such
that

T+ Ayl = e+ max ([T, | T, + || Ax]]) .
Remark. If X satisfies the Basic Inequality and if T, {A4,} and ¢ are as
above, then there exists N such that
T + BAxI| < e+ max (|| T||, [| Tll. + Bl Ax]|)
for all B€[0, 1]. Indeed, if this were false then for each n there would exist
B, €0, 1] such that
(1) T + BaA.ll > e+ max ([T, | Tl + B.ll4.ll) .
But B8,4,—0 (SOT) and (8,4,)* —0 (SOT) and hence (1) contradicts the

Basic Inequality.
The following theorem is the main tool of this paper.

THEOREM 1. Let X be a Banach space that satisfies the Basic Inequality
and let TeQ(X)~XK(X). Let {T,)CXK(X) be a sequence of compact
operators such that T, — T (SOT) and Ty — T* (SOT). Then there exists a
sequence {a,} of non-negative real numbers such that Y a, = 1 and
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T — K| =1Tl.,
where K = Y a,T,.
Remark. By the Principle of Uniform Boundedness the set {|| T, ||} is

bounded; therefore the series ) a,7T, is norm-convergent and thus K is
compact.

Proof. Let A, =T — T,. Thus 4,—0 (SOT) and A¥ —0 (SOT) and
sup||4,[| < .

Claim. There exists an increasing sequence of positive integers n(k)
and a sequence «, of positive real numbers such that

(2) 2o =1,
(3) HE;vakA'n(k)H =|[T]l, — ex,
for all N, where
ev = || T./3" .
We construct the n(k) and a;, by induction. For & =1, let (1) = 1 and let
@, > 0 be such that [|a,A4,|| = || T||, — . Suppose a,, --+, &y and n(l), ---,

n(N) have been chosen such that (3) holds. Choose n(N + 1) > n(N) such
that
(4) HE;VakAn(k) + BA,vivll

= éyy + maX(HEivakAn(k)H, ||EivakAn(k)He + B][An(N+1)H)

for every 8 €[0, 1]. This is possible by the remark following the definition
of the Basic Inequality.
Consider

(5) HEivakAn(k) + @A, vl .

As @ — <o, (5) becomes larger than ||T||, — ¢y,,. For a =0, (5) equals
[|T||l, — ey by the induction hypothesis (3), and so is less than T, — exsse
Therefore there exists a,,, > 0 such that
(6) HEf’HakAn(k)H =Tl — eyt -
Now we show that >""'@, < 1. From (6),
T, — ey = ||(Efv+lak)T - EfVHakka)H = (Eiﬂlak)“ Tl
and so Y. e, < 1.

Take 8 = @y, in (4); if the maximum on the right hand side of (4) were
attained by the first term then we would have

||Efv+lakAn(k) || < enss + HE;VakAn(k)[[ .
By (6) and (3), the above becomes



604 S. AXLER, 1. D. BERG, N. JEWELL, AND A. SHIELDS

[Tl — eyes = ey + I Tl — ey -

Thus ¢y < 2¢y.,, contradicting the definition of ¢y. Thus with 8 = a,.,, (4)

becomes

E|Eiv+lakAn(k)H = ey t+ HE?“}:AMk)He + @y || Apivin ||
= &y4 T+ (Efak)\l T, + @yl Anivanll -
Using (8) and letting N — o« give

Tl = 1227 el |l = Q@) || T -
Since we have already shown that Y a, <1, we see that Y a, = 1. This
completes the proof of the claim.
Define {a,} by: @, = @, and a; = 0 if 1 is not of the form n(k). Let

K = EaiTi = Eaan(k) =T — EakAn(k) .
Thus
|T — K| = || EakAn(k)H =T,
which completes the proof of the theorem.

The following corollary shows that the operator K in Theorem 1 is never
unique.

COROLLARY. Let X, T, and {T,} be as in the statement of Theorem 1.
Then there exist two sequences {a.,}, {b,} of non-negative real numbers such
that Y a, =>,b, =1 and

IT—K|=|IT—-K]l =TI,
where K =Y a,T,, K, = 3,b,T,, and K + K,.

Proof. Let {a,} and K be as given in the conclusion of Theorem 1.
Then T, — K— T — K (SOT) and (T, — K)* — (T — K)* (SOT). Let O be a
convex neighborhood of 7'— K in the strong operator topology whose closure
does not contain 0. By deleting a finite number of terms we may assume
that T, — Ke©O for all n. By Theorem 1 there exists a sequence {b,} of
non-negative numbers such that 3 b, =1 and

(T —K)—-K'||=IT - K|. =TI,

where K' =>,b,(T, — K) =(_b,T,) — K. Thus K, =K + K' =3b,T,
is also a closest compact operator to 7. Since K’ is an infinite convex
combination of {T, — K} C O, we see that K’ = 0. Thus K # K. Q.E.D.

The special case p = 2 of the following theorem is used in the next
section.

THEOREM 2. Let 1 < p < oo. Then I* satisfies the Basic Inequality.
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Proof. Let T e £(I?) and let {4,}  £(1*) be such that 4, — 0 (SOT) and
A¥—0 (SOT). Let ¢>0 and let @, = max(||T||, || Tll, + || 4.]]). If the
desired inequality did not hold, then there would exist a sequence of unit
vectors {x,} C I? such that

(7) (T + A)2,|| > ¢ + a, .

By passing to a subsequence (without relabeling) we may assume that there
is a vector x € [? such that x, —« weakly. Lety, =2, —2. Thenz,=2+v,,
and y, — 0 weakly (and hence Ty, — 0 weakly). Hence

(8) (T+ A))x, =Tx + Ty, + Ay, + A

Let E, denote the natural projection of [? onto the span of the first n
coordinate vectors; let F, =1 — E, (where 1 denotes the identity operator
1?). Clearly F, — 0 (SOT) and F}¥ — 0 (SOT). It follows that || F,K|| — 0and
|| KF',|| — 0 for each compact operator K (we omit the proof). Since

IT - K|z ||FAT - K)|| =z [|F.T|| — [|F.KIl,

it can be shown that || F,T||— || T||..

Let 0 be a small positive number to be specified later, and fix M such
that ||F,Tx|| <98, ||Fux| <8, and ||F,T| <||T||, + 6. Since Ty,—0
weakly, we have || E, Ty, || < for all sufficiently large .

Since K, is compact and A4 —0 (SOT) we have | E,A4.9.| =
| ExA,l|llY.]| <6 for all sufficiently large n.

From (8) we have

(T + Az, = Ey(Tx) + Fy(Ty, + Ay,) + A2
+ FM(Tx) + EM(Tyn + Anyn) .
Since 4, — 0 (SOT), it follows that || 4,x|| < 0 for n sufficiently large. Thus
for large n
(9) (T + A, || = || Ex(Tx) + Fyu(Ty, + Ay.)|| + 40 .

Since E,(Tx) and F,(Ty, + A,y,.) are vectors in [? supported on disjoint
subsets of the positive integers, we have

(10) || Eu(Tx) + Fu(Ty. + A.9)||° = || Ex(T2)||” + || Fu(Ty. + Ay
<|ITIPl2ll? + ([ Fu Tl + [ ALl])? ] vall?
< az||z||” + (I Tl + 0 + [| A1) |lyall”
< (@, + 37(ll=l” + llalP) -

Since y,— 0 weakly we have ||E,y.|| <0 for n» sufficiently large;
therefore
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(11) l2ll” + lya " = [ Exa|l? + [|[Fy2|l? + [ Ex¥,|” + || Fuy.|l?
= B ll” + || Fuy, || + 207
= ||Eyx + Fyy,||” + 207
=|le — Fyx + vy, — Eyy,||” + 267
= (el + (| Fux|l + [| Exy, |y + 26
= (1 + 20)* + 207 .
Applying (11) to (10) shows that

(12) | Ew(Tx) + Fu(Ty, + A7 < (@, + 0)7[(1 + 20)7 + 267] .
Applying (12) to (9) gives
(13) (T + Az, || < (@, + [ + 20)7 + 20°]/> + 45

for all sufficiently large n. Now choose 6 small enough so that the right
hand side of (13) is less than «, + ¢, contradicting (7). This completes the
proof of the theorem.

For operators on Hilbert space, ideas similar to the Basic Inequality
were used by Berg [8].

Theorems 1 and 2 can be used to show that each operator on [?
(1 < p < ) has a closest compact approximant. As noted in the introduec-
tion this result is already known; however, as the following corollary shows,
our method gives additional information.

COROLLARY. Let 1 < p < o, let Te L), and let (t;;) be the matrix
representing T with respect to the usual basis. Then there exist numbers
(¢i5) such that 0 < c;; <1 and (¢;;t;;) is the matrixz representing a closest
compact approximant to T.

Proof. Let E, denote the natural projection of I? onto the span of the
first » basis vectors. Let T, = E,TE,. Then T, is compact, T, — T (SOT),
and Ty — T* (SOT). By Theorems 1 and 2 there exists a closest compact
operator to T which is an infinite convex combination of T,, T,, ---. To
complete the proof note that the matrix entry for T, in position i, j is
either 0 or ¢,;. Q.E.D.

Note that the proof of the above corollary does not require very many
properties of 17, once the Basic Inequality is known to be satisfied. We state
a more general theorem along these lines; further generalizations are
possible (see [6]). Let X be a Banach space with a Schauder basis {e.} and
let {p,} € X* be the associated coordinate functionals. Thus for each x e X
we have

=) p(r)e .
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Let E, denote the projection of X onto the span of the first # basis vectors:
(14) Ex =3 p(x)e .

The basis {e;} is called a shrinking basis if the functionals {p:} form a
Schauder basis for X*,

COROLLARY. Let X be a Banach space which satisfies the Basic
Inequality and which has a shrinking basis. Let Te £(X). Then there
exists a compact operator K on X such that || T — K| =T,

Proof. Let E, be defined by (14), and let T, = E,T. Then T, is compact
and T, — T (SOT). Since {e,} is a shrinking basis, we also have T* — T*
(SOT). The result now follows from Theorem 1. Q.E.D.

This raises the question of identifying those Banach spaces X which
satisfy the Basic Inequality. As we have seen, [? (1 < p < ) satisfies it.
Also, I' satisfies it trivially, since it can be shown that if {A,} < £(1") and if
Ay — 0 (SOT), then ||A,||— 0 (the proof is based on the representation of
the operators as matrices; we omit the details). Also, a direct calculation
shows that ¢, satisfies the Basic Inequality.

On the other hand, in [6] we show that if 1 < p < < and p # 2, then
L” does not satisfy the Basic Inequality. Finally, we note that there exists
a separable Banach space X, isomorphic to Hilbert space, which does not
satisfy the Basic Inequality. Indeed, Holmes and Kripke [21] have con-
structed an equivalent norm on separable Hilbert space such that no non-
compact operator on the space has a closest compact approximant. Of course,
this renormed Hilbert space has a shrinking basis and S0, by the last
corollary, this space does not satisfy the Basic Inequality.

3. The distance to H* + C

Let L” denote the usual Lebesgue space of functions on the unit cirele.
Let H” denote the subspace of L? consisting of those functions whose
Fourier coefficients of negative index vanish. Let C denote the space of
continuous (complex-valued) functions on the unit circle. The linear span
of H” and C is denoted by H* + C. It is known that H* + C is a closed
subalgebra of L= (see [33, p. 191]).

Among the subalgebras of L the algebra H* + C plays a special role.
For example, every closed subalgebra of L= that properly contains H= must
also contain H” + C (see [20]). The space H* + C also plays an important
role in the theory of Toeplitz operators, in the study of the space of func-
tions of vanishing mean oscillation (VMO), and in the factorization of L=



608 S. AXLER, 1. D. BERG, N. JEWELL, AND A. SHIELDS

functions; see for example [5], [7], [11], [13], [32], [34].

We wish to solve the following problem raised by D. Sarason ([351,
Problem 13, p. 197) and Adamjan, Arov, and Krein [2]: Does each function
in L= have a best approximant from H“+C? Best H” approximants always
exist, since H* is a weak-star closed subspace of L~ (in contrast, H" + Cis
weak-star dense in L*). It is also known that every L~ function has a best
approximant from C; this is proved by a direct construction (for generali-
zations see [25], [26], and [31]).

The solution of this problem requires the introduction of Hankel
operators. Let @ denote the orthogonal projection of L* onto (H*»*. For
each fe L™ we define the Hankel operator H,: H*— (H*)* by Hsh = Q(fh)
for h e H2.. With respect to the usual orthonormal bases {z"}7 and {z"}= for
H? and (H®* respectively, the matrix for H, is constant on the cross
diagonals:

where a, is the n'* Fourier coefficient of f. Observe that if he H~, then
H, = H,,, since only the Fourier coefficients of negative index are involved.
In fact a theorem of Nehari [30] states that || H,|| = dist (f, H").

It is also true that || H/||, = dist(f, H* + C). This follows from
Theorem 0.1 of [1]; for completeness we present a more elementary proof.
Let S denote the operator of multiplication by z on H* (the unilateral shift
operator). If K is any compact operator and = is a positive integer then

\H, — K|| = ||(H; — K)S"|| = | H/S"*|| — | KS"|l -

Since (S")* — 0 (SOT) we have || KS*|| — 0. Also, H;S" = Hy;n. Hence

|H, — K|| = Tim || H/,»|| = lim dist(fz", H*) = limdist(f, 7" H")

> dist(f, H* + C) ,

since H* + Cis an algebra. Thus || H,||, = dist(f, H® + C). In the reverse
direction, we recall that if » € H* + C then H, is compact (this follows from
the fact that a continuous function can be approximated by polynomials).
Hence if he H* + C, then

\f = hlle = |Hy — Hill = | Hy — Hyll. = [[Hslle

which completes the proof. In particular this yields Hartman’s result [17]
that H, is compact if and only if fe H* + C.
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THEOREM 3. Let fe L*. Then there exists a compact Hankel operator
K such that ||H; — K|| = || Hy||,.

Proof. Let 0,f denote the n'* Cesaro mean of the Fourier series of f.
Let T = H;and T, = H, ;. Weclaim that T, — T (SOT). Indeed, for h e H*
we have

1T = Dol = QU — o bl = ||(F = ol = (1 — oufFlRE.

Because ||o,f|l. < || f|l. and o,f — f pointwise almost everywhere (r381,
Chap. III, Thm. 3.9, p. 90), the integral above tends to zero by the Lebesgue
dominated convergence theorem. Since H *h = (1 — Q)(fh), a similar argu-
ment shows that T¥ — T* (SOT).

Theorem 1 and Theorem 2 (with p = 2) now give a best compact approxi-
mant K = 3 a,T, to H;. Letg =3 a,0,f; then K = H,. Q.E.D.

In [1], Theorems 0.1 and 0.2, Adamjan, Arov, and Krein show that for
each n, the distance from H; to the set of operators of rank at most % is
attained by a Hankel operator of rank at most n. Theorem 3 is the analogous
result with the set of operators of rank at most » replaced by the set of
compact operators.

It is necessary in the proof of Theorem 3 to use the Cesaro means rather
than the partial sums s,f of the Fourier series because H, — H, ; does not
necessarily tend to zero in the strong operator topology. However, each
Cesaro mean o, f is a convex combination of the partial sums of the Fourier
series, and thus the function g obtained is an infinite convex combination
of the partial sums s, f.

We now answer the question posed earlier in this section.

THEOREM 4. Let fe L®. Then there exists he H* + C such that
|f — Rkl =dist(f, H* + C).

Proof. By Theorem 3 there exists a function g e H» + C (actually the
proof gives g € C) such that ||H,_,|| = ||H;||,. From the remarks preceding
Theorem 3 we know that |[H, || =dist(f —g, H*) and | H/|, =
dist(f, H* + C). Letd e H=besuch that||(f — g) — d||.. = dist(f — g, H®).
Thusif h =g + d, then he H* + Cand || f — R, = dist(f, H* + C).

Q.E.D.

It would be of interest to know whether Theorem 4 remains valid if
H~+Cisreplaced by an arbitrary closed subalgebra of L™ that contains H*.

As noted earlier each fe L” has a best H* approximant. This best
approximant is sometimes unique; this is true, for example, when f e C (and
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hence when fe H* + C, [9], [36]). In fact, there are also functions not in
H> + C that have unique best H” approximants. In contrast, the following
corollary shows that best H* + C approximants are never unique which
answers a question raised in [2].

COROLLARY. Let feL®, fe H® + C. Then there exist two different
Sunctions h, h, € H* + C such that

f = hlle = If = bl = dist(f, H* + C) .

Proof. By the corollary to Theorem 1 we see that in Theorem 3 we
could have concluded that there exist two distinct compact Hankel operators
K, K, such that

|H; — K|| = ||H; — K,|| = [|Hsll, -

If K=H, and K, = H,, then g — g, ¢ H” (since H, # H,); the proof of
Theorem 4, using g and g,, now gives two distinct best H* + C approxi-
mants to f. Q.E.D.

The following corollary shows that L*/(H” + C) is not the dual of any
Banach space (in contrast to L™/H>, which is the dual of the space of func-
tions in H* which have mean value zero). We would like to thank Donald
Sarason for suggesting the proof. It is modeled on the proof of Koosis which
characterizes extreme points of the closed unit ball of L*/H" ([24], Theorem
4.1).

COROLLARY. The closed unit ball of L*/(H” + C) has no extreme points.

Proof. Let f+(H”+C) be an element of the unit sphere of L*/(H*+C).
By Theorem 4 we can assume that || f||l. = 1. By the last corollary, there
exists a function h e H* + C, h # 0, such that || f + h|l. = 1.

Let |2| = 1. Then

@) + 2 h@) { S 2@+ 1@ + ha)| <1.

Thus if | f(z) + 1/2)h(z)| = 1, then | f(2)| = | f(2) + h(z)| = 1; since the first
inequality above is an equality, a calculation shows that i(z) equals zero.
Define a funection g € L™ by

9(2) =1 — |f(2) + % h) | .

The previous paragraph shows that ¢ = 0 and that g is not identically zero.
Thus there is a constant ¢ > 0 and a non-trivial subset E of the circle such
that ¢y, < g. Thespace H” + C contains no non-trivial characteristic func-
tions (this follows by combining Cor. 6.42 of [12] with the third corollary
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of [19], p. 188) and so f * ¢y + (H” + C) # f + (H* + C). Furthermore

If £ ete + H + Ol = [/ % oo + 20

= sup (| /() + Lu@ | +o@)=1.

Since

f+(H°°+C):%(f+ch+(H°°+C))+%(f—ch+(H°°+C)),

we

conclude that f + (H” + C) is not an extreme point of the closed unit

ball of L”/(H* + C).
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