Factorization of $L Minfty$ Functions

Sheldon Axler

The Annals of Mathematics, 2nd Ser., Vol. 106, No. 3 (Nov., 1977), 567-572.

Stable URL:
http://links jstor.org/sici?sici=0003-486X%28197711%292%3A106%3A3%3C567%3 AFOF%3E2.0.CO%3B2-P



Annals of Mathematics, 106 (1977), 567-572

Factorization of L> functions

By SHELDON AXLER*

Let D = {#ze C: |z| < 1} be the unit disk in the complex plane and let L?
denote the usual Banach space L? = L?(dD, df/2x). The Hardy space H? is
the subspace of L? consisting of those functions whose Fourier coefficients
corresponding to the negative integers vanish; more precisely,

H”:{geL”:S g(z)z":O for n:l,z,...}_
aD

A function b € H> is called an inner function if |b(z)| = 1 for almost all
2€0D. The most important class of inner functions are the Blaschke pro-
ducts. A Blaschke product is obtained by taking a sequence @, @, +++ in D
such that > (1 — |@,|) < c=. An analytic function b: D—C is then defined
by

—rrle.l a.—=z

@ =2 T
The summation condition on {@,} insures that the infinite product converges
to an analytic function with zeroes at precisely the points a,, ;, ---. By
taking radial limits in the usual way, the set of bounded analytic functions
defined on D can be identified with the Banach algebra H=. Under this
identification, the Blaschke product b defined above satisfies |b(z)| = 1 for
almost all z€dD.

Let C = C(0D) denote the set of continuous complex-valued functions
defined on the circle. It is now well known that the linear span H> + C of
H~> and C is actually a closed subalgebra of L>.

Properties of the algebra H* + C have been useful in several situations.
The following theorem expresses the surprising fact that an arbitrary
bounded measurable function can be described by two “nice” functions, one
from H= + C and the other a Blaschke product.

THEOREM 1. Let g€ L>. Then there exists a Blaschke product b and a
Junction h € H* + C such that g = h/b.
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To prove this theorem we use a result of R.G. Douglas and W. Rudin
[1] which states that {h/b: h € H* and b is a Blaschke product} is a dense
subset of L~. Fixing ge L=, let h, and b, be such that ||g — h./b.|l. < 1/n,
where h, € H* and b, is a Blaschke product. The Blaschke product b, can be
written as a product b, = ¢,d,, Where ¢, is a Blaschke product with a finite
number of zeroes and the zeroes

{2,529 = 1,2, -++} of d, satisfy 3 {1 — |z,;} <

1
2"

Let b be the Blaschke product whose zero set is {z,;:7,5=1,2, ---}.
Then for each positive integer n,

L >lg — hafball
n

= |lg — ha/(cadn) ||

= ||bg — h.(b/d.)1/c,) ||
But b/d, € H* and 1/¢c, € C and H* + C is an algebra, and so k,(b/d,)(1/c,) €
H=* + C. Thus dist (bg, H* + C) < 1/n for each n. Since H> + C is closed
we can conclude that bge H= + C. Letting b = bg gives the desired factori-
zation g = h/b.

Since a Blaschke product has absolute value one almost everywhere on

the cirele, the following corollary is an immediate consequence of Theorem 1.

COROLLARY 1. Let ge L. Then there exists a function he H> 4+ C
such that |g| = |hl.

The above corollary should be compared with the classical H> statement:
if g e L=, then there exists a function & € H* such that |g| = | k| if and only
if Sloglgl > —coorg = 0.

If Bc L~ and FE is a measurable subset of the circle, then E is called a
set of uniqueness for B if 0 is the only function in B which vanishes almost
everywhere on E. For example, every set of positive measure is a set of
uniqueness for H*. In contrast to the H> situation, the next corollary shows
that essentially the only set of uniqueness for H> + C is the entire circle.

COROLLARY 2. Let E be a set of uniqueness for H* + C. Then 6D~ E
has measure zero.

To prove this corollary, let E be a set of uniqueness for H~ + C. Let
g be the characteristic function of 6D ~ E. By Corollary 1, there is a func-
tion h € H* + C such that |h| = ¢g. Inparticular i vanishes a.e. on E. Since
E is a set of uniqueness for H* + C, the function » must actually be the
zero function. Thus g = 0 and so 0D ~ E has measure zero.
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For a compact Hausdorff space X, let C(X) denote the algebra of con-
tinuous complex-valued functions defined on X. A closed subalgera B of
C(X)is called regular if for every closed set E < X and every point x € X~ F,
there is a function g € B such that g|E = 0 and g(z) # 0. In [2, p. 190] K.
Hoffman shows that a regular algebra is not contained in any maximal
proper closed subalgebra of C(X).

Because L~ is a commutative C*-algebra it can be identified with
C(M(L“’)); here M(L~) denotes the set of non-zero multiplicative linear
functionals on L™ with the usual Gelfand topology. Thus H* and H* + C
can be thought of as closed subalgebras of C(M(L~)) and it makes sense to
consider whether they are regular.

Since an H= function cannot vanish on a large set, it is clear that H*
is not regular. Again, however, adding on the continuous functions produces
a significant change. Corollary 1implies that | H* + C|= | L*| = |C(M(L))|,
where |B| denotes the set {|g|: g € B}. Using Urysohn’s lemma then gives
the following corollary.

COROLLARY 3. H* + C 1s a regular subalgebra of L*.

As a consequence of this corollary, H* + C (and thus also H*) is not
contained in a maximal proper closed subalgebra of L. This fact was
previously proved by using fiber algebras, which we now discuss.

Let z denote the identity function on 0D. For a €dD the fiber X, of
M(L~) over a is the set X, = {¢ € M(L*): 4(z) = a}. For g € L=, the function
9| X, can be thought of as describing the local behavior of g at the point a.

By restricting the appropriate algebras and functions to a fiber, we
obtain local versions of our results. If g €C, then g| X, is a constant func-
tion for each @ €0D. Thus (H* + C)| X, = H*| X, and so in local results
we can replace H* + C by H™>.

K. Hoffman and I.M. Singer [3] proved that H=|X, is a regular sub-
algebra of C(X,). The local version of Corollary 1 shows that much more
is true; we see that |H*| X, | = | L~| X,|.

The local version of Theorem 1 leads to a complete description of the
local behavior of an arbitrary L> function.

COROLLARY 4. Let ge L™ and let ¢eoD. Then there exist Blaschke
products b and b, and a real-valued function v € L' such that

g| X, = (bb,exp[v + @) | X, ,
where ¥ denotes the harmonic conjugate of v.

By Theorem 1 and the above remarks, there is an H* function % and a
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Blaschke product b, such that g| X, = (hd,)| X,. We can write & as the pro-
duct of an outer function exp[v + i#] and an inner function s. The proof
of the corollary is now completed by using a result of Kenneth Hoffman
which states that if s is an inner function and @ edD, then there is a
Blaschke product b such that s| X, = b| X,

Hoffman’s result used above was never published, so a short outline of
his proof will be given. For convenience assume that @« = 1. For N <1/2,
let
s(z) + M1 — 2)
2+ Mz — 1)s(z)

8:(2) =

Then s; is a meromorphic function on D which satisfies |8:(2)| = 1 for almost
all zeoD. If \ is sufficiently small, then the denominator z + X(z — 1)s(z)
has precisely one zero on D which is denoted by a;. Let

bie) = 2 =% . EZ X g
1—a; 1—az
Thus b, is an inner function in H~ and b;| X, = s| X,. An argument of D.J.
Newman (see p. 176 of [2]) now shows that for almost all small A, b, is
actually a Blaschke product.

If g is a unimodular function in L* and a € 6D, then in the factorization
of Corollary 4 we must have that v| X, = 0, so that in particular » is con-
tinuous at a. Thus g|X, = (bb, exp[i¥])| X,, where b and b, are Blaschke
products and v is a real-valued function which is continuous at «. It is of
interest to know whether there is a global version of this factorization. To
study this question, it is useful to introduce the algebra QC which is defined
by QC = (H* + C) N (H* + C); here the bar denotes complex conjugation
rather than closure. Functions in QC are called quasi-continuous; it is clear
that C < QC and it is not hard to see that the inclusion is proper.

Donald Sarason [4] showed that if w is a unimodular function in QC then
there are continuous real-valued functions % and v and an integer » such
that w = z"exp[i(u + ¥)]. He also asked the following question, which is
still open: Can every unimodular function in H* + C be written as the pro-
duct of a unimodular function in QC and an inner function?

If Sarason’s question has an affirmative answer, then it could be com-
bined with Theorem 1 to show that an arbitrary unimodular function could
be written in the form bb, exp[i(u + ¥)], where u and v are continuous
real-valued functions, b, is a Blaschke product, and b is an inner function.
To see how this would go, let g € L* be unimodular. By Theorem 1, there
exist he H* + C and a Blaschke product b, such that g = hb,. Since
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h is a unimodular function in H* + C it could be written in the form
h = bz"exp[i(u + ¥)] where w and v are continuous real-valued functions
and b is an inner function. Thus g = bb, exp[i(uw + ¥)]is the desired factori-
zation, where 2" has been absorbed into b if #n > 0 and into b, if n < 0.

Let +r denote the atom singular inner function 4(z) = exp [(z + 1)/(z — 1)].
In [5] Sarason shows that there is a Blaschke product b such that 4/beC. It
is too much to hope that this will hold for arbitrary singular inner functions.
However, it seems to me reasonable to conjecture that if s is a singular
inner function, then there exists a Blaschke product b such that s/b e QC.
This conjecture seems plausible because Theorem 1 and Corollary 4 do not
involve arbitrary inner functions, but only Blaschke products. If this
conjecture is true, then Sarason’s question could be restated as: If his a
unimodular function in H* + C, does there exist a Blaschke product b such
that 2/b € QC? In any case, it is useful to have a criterion for determining
divisibility in QC and H + C. As we will see, the divisibility question can
be phrased in terms of Toeplitz operators.

Let P denote the orthogonal projection of L? onto H® For ge L*, the
Toeplitz operator T, is the operator from H* to H* defined by T s = P(gh).

For b a unimodular function in H* + C, let P, denote the operator
P, = T,Ty. If bis an inner function, then P, is the orthogonal projection
of H? onto b H*.

Let £ denote the set of bounded operators from H* to H? and let X < £
denote the compact operators. Then £/X is a C*-algebra and so it makes
sense to talk about projections and ordering in £/ . Let 7: £ — £/X be the
canonical quotient mapping. If g € L~ and h € H*+ Cthen n(T,,)=n(T,)x(T}).
Thus 7(P,) is a projection if b is a unimodular function in H* + C. The next
theorem states that divisibility in H* + C corresponds precisely to the
ordering in the Calkin algebra.

THEOREM 2. Let b and w be unimodular functions in H* + C. Then
b/we H* + C if and only +f n(P,) = n(P,).
First suppose that u = b/we H* + C. Then
n(P,) — n(P,) = n(T,T3) — n(Tw.Ti3)
= n(T,)"(T%) — a(T,)7(T)x(T2)n(Ts)
= (T,)[1 — n(T.T3)]r(T3)
= (T,)[1 — n(P)]x(T.)* .

But n(P,) is a projection and so 1 — ©(P,) = 0. Thus the right-hand side of
the above equation is positive and so #(P,) = w(P,).
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To prove the implication in the other direction, we introduce Hankel
operators. For g € L=, the Hankel operator H, with symbol g is the operator
from H* to L* ® H* defined by H,h = (1 — P)(gh). An easy computation
shows that T,;, — T,T; = H;*H, for g, fc L~.

Now suppose that z(P,) = n(P,). Then

0=n(T, Tz — T,T5)
and so
0 = o(T)*n(T, T3 — T,T5)n(T;)
= (T3.T% — 1)
= —n(Hyz)*n(Hy3) .

Clearly n(H,3)* n(H,3) is a positive element of the Calkin algebra and the
above equation says it is also negative. Thus 7n(H,5*H,z) = 0 which is
equivalent to saying that H,; is compact. However, if a Hankel operator
is compact then its symbol must be in H* + C. Thus b = bjw e H* + C,
which completes the proof of the theorem.

COROLLARY 5. Let b and w be unimodular functions in H* + C. Then
b/w e QC if and only if n(P,) = n(P,).

Thus Sarason’s question is equivalent to asking whether
{r(P):beH* + C, |b] = 1} = {x(P,): be H", |b| = 1} .
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