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Abstract. This article discusses Paul Halmos’s crucial work on Toeplitz
operators and the consequences of that work.
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A Toeplitz matrix is a matrix that is constant on each line parallel to the
main diagonal. Thus a Toeplitz matrix looks like this:

a0 a−1 a−2 a−3 · · ·

a1 a0 a−1 a−2
. . .

a2 a1 a0 a−1
. . .

a3 a2 a1 a0
. . .

...
. . .

. . .
. . .

. . .

In this article, Toeplitz matrices have infinitely many rows and columns, indexed by
the nonnegative integers, and the entries of the matrix are complex numbers. Thus
a Toeplitz matrix is determined by a two-sided sequence (an)∞n=−∞ of complex
numbers, with the entry in row j, column k (for j, k ≥ 0) of the Toeplitz matrix
equal to aj−k.

We can think of the Toeplitz matrix above as acting on the usual Hilbert space
`2 of square-summable sequences of complex numbers, equipped with its stan-
dard orthonormal basis. The question then arises of characterizing the two-sided
sequences (an)∞n=−∞ of complex numbers such that the corresponding Toeplitz
matrix is the matrix of a bounded operator on `2. The answer to this question
points toward the fascinating connection between Toeplitz operators and complex
function theory.

This paper is an extension and modification of the author’s article Paul Halmos and Toeplitz
Operators, which was published in Paul Halmos: Celebrating 50 Years of Mathematics, Springer,

1991, edited by John H. Ewing and F. W. Gehring.
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Let D denote the open unit disk in the complex plane and let σ denote the
usual arc length measure on the unit circle ∂D, normalized so that σ(∂D) = 1.

For f ∈ L1(∂D, σ) and n an integer, the nth Fourier coefficient of f , denoted f̂(n),
is defined by

f̂(n) =

∫
∂D

f(z)zn dσ(z).

The characterization of the Toeplitz matrices that represent bounded operators
on `2 is now given by the following result.

Theorem 1. The Toeplitz matrix corresponding to a two-sided sequence (an)∞n=−∞
of complex numbers is the matrix of a bounded operator on `2 if and only if there

exists a function f ∈ L∞(∂D, σ) such that an = f̂(n) for every integer n.

The result above first seems to have appeared in print in the Appendix of a
1954 paper by Hartman and Wintner [16], although several decades earlier Otto
Toeplitz had proved the result in the special case of symmetric Toeplitz matrices
(meaning that a−n = an for each integer n). One direction of the result above
is an easy consequence of adopting the right viewpoint. Specifically, the Hardy
space H2 is defined to be the closed linear span in L2(∂D, σ) of {zn : n ≥ 0}. For
f ∈ L∞(∂D, σ), the Toeplitz operator with symbol f , denoted Tf , is the operator
on H2 defined by

Tfh = P (fh),

where P denotes the orthogonal projection of L2(∂D, σ) onto H2. Clearly Tf
is a bounded operator on H2. The matrix of Tf with respect to the orthonor-
mal basis (zn)∞n=0 is the Toeplitz matrix corresponding to the two-sided sequence

(f̂(n))∞n=−∞, thus proving one direction of Theorem 1.

Products of Toeplitz Operators

Paul Halmos’s first paper on Toeplitz operators was a joint effort with Arlen Brown
published in 1964 [5]. The Brown/Halmos paper set the tone for much of the later
work on Toeplitz operators. Some of the results in the paper now seem easy,
perhaps because in 1967 Halmos incorporated them into the chapter on Toeplitz
operators in his marvelous and unique A Hilbert Space Problem Book [11], from
which several generations of operator theorists have learned the tools of the trade.
Multiple papers have been published in the 1960s, 1970s, 1980s, 1990s, and the
2000s that extend and generalize results that first appeared in the Brown/Halmos
paper. Although it is probably the most widely cited paper ever written on Toeplitz
operators, Halmos records in his automathography ([12], pages 319–321) that this
paper was rejected by the first journal to which it was submitted before being
accepted by the prestigious Crelle’s journal.

The Brown/Halmos paper emphasized the difficulties flowing from the ob-
servation that the linear map f 7→ Tf is not multiplicative. Specifically, TfTg is
rarely equal to Tfg. Brown and Halmos discovered precisely when TfTg = Tfg. To
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state their result, first we recall that the Hardy space H∞ is defined to be the set

of functions f in L∞(∂D, σ) such that f̂(n) = 0 for every n < 0. Note that a func-
tion f ∈ L∞(∂D, σ) is in H∞ if and only if the matrix of Tf is a lower-triangular
matrix. Similarly, the matrix of Tf is an upper-triangular matrix if and only if
f̄ ∈ H∞. The Brown/Halmos paper gives the following characterization of which
Toeplitz operators multiply well.

Theorem 2. Suppose f, g ∈ L∞(∂D, σ). Then TfTg = Tfg if and only if either f̄
or g is in H∞.

As a consequence of the result above, the Brown/Halmos paper shows that
there are no zero divisors among the set of Toeplitz operators:

Theorem 3. If f, g ∈ L∞(∂D, σ) and TfTg = 0, then either f = 0 or g = 0.

The theorem above naturally leads to the following question:

Question 1. Suppose f1, f2, . . . , fn ∈ L∞(∂D, σ) and

Tf1Tf2 . . . Tfn = 0.

Must some fj = 0?

Halmos did not put the question above in print, but I heard him raise and
popularize it at a number of conferences. The Brown/Halmos paper shows that
the question above has answer “yes” if n = 2. Several people extended the result to
n = 3, but after that progress was painfully slow. In 1996 Kun Yu Guo [9] proved
that the question above has an affirmative answer if n = 5. In 2000 Caixing Gu [8]
extended the positive result to the case where n = 6. Recently Alexandru Aleman
and Dragan Vukotić [1] completely solved the problem, cleverly showing that the
question above has an affirmative answer for all values of n.

The Spectrum of a Toeplitz Operator

Recall that the spectrum of a linear operator T is the set of complex numbers
λ such that T − λI is not invertible; here I denotes the identity operator. The
Brown/Halmos paper contains the following result, which was the starting point
for later deep work about the spectrum of a Toeplitz operator.

Theorem 4. The spectrum of a Toeplitz operator cannot consist of exactly two
points.

In the best Halmosian tradition, the Brown/Halmos paper suggests an open
problem as a yes/no question:

Question 2. Can the spectrum of a Toeplitz operator consist of exactly three points?

A bit later, in [10] (which was written after the Brown/Halmos paper al-
though published slightly earlier) Halmos asked the following bolder question.

Question 3. Does every Toeplitz operator have a connected spectrum?
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This has always struck me as an audacious question, considering what was
known at the time. The answer was known to be “yes” when the symbols are
required to be either real valued or in H∞, but these are extremely special and
unrepresentative cases. For the general complex-valued function, even the possibil-
ity that the spectrum could consist of exactly three points had not been eliminated
when Halmos posed the question above.

Nevertheless, Harold Widom [19] soon answered Halmos’s question by prov-
ing the following theorem (the essential spectrum of an operator T is the set of
complex numbers λ such that T − λI is not invertible modulo the compact oper-
ators).

Theorem 5. Every Toeplitz operator has a connected spectrum and a connected
essential spectrum.

Ron Douglas [7] has written that Widom’s proof of the theorem above is
unsatisfactory because “the proof gives us no hint as to why the result is true”,
but no alternative proof has been found.

Subnormal Toeplitz Operators

Recall that a linear operator T is called normal if it commutes with its adjoint
(T ∗T = TT ∗). The Brown/Halmos paper gave the following characterization of
the normal Toeplitz operators.

Theorem 6. Suppose f ∈ L∞(∂D, σ). Then Tf is normal if and only if there is a
real-valued function g ∈ L∞(∂D, σ) and complex constants a, b such that f = ag+b.

One direction of the theorem above is easy because if g is a real-valued
function in L∞(∂D, σ) then Tg is self-adjoint, which implies that aTg+bI is normal
for all complex constants a, b.

A Toeplitz operator is called analytic if its symbol is in H∞. The reason for
this terminology is that the Fourier series of a function f ∈ L1(∂D, σ), which is
the formal sum

∞∑
n=−∞

f̂(n)zn,

is the Taylor series expansion
∞∑

n=0

f̂(n)zn

of an analytic function on the unit disk if f̂(n) = 0 for all n < 0.
An operator S on a Hilbert space H is called subnormal if there is a Hilbert

space K containing H and a normal operator T on K such that T |K = S. For
example, if f ∈ H∞, then the Toeplitz operator Tf is subnormal, as can be seen by
considering the Hilbert space L2(∂D, σ) and the normal operator of multiplication
by f on L2(∂D, σ). Thus every analytic Toeplitz operator is subnormal.
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All normal Toeplitz operators and all analytic Toeplitz operators are sub-
normal. These two classes of Toeplitz operators were the only known examples
of subnormal Toeplitz operators in 1970 when Paul Halmos gave a famous series
of lectures [14] in which he posed ten open problems in operator theory. One of
Halmos’s ten questions asked if there were any other examples:

Question 4. Is every subnormal Toeplitz operator either normal or analytic?

In 1979 Halmos described [15] what had happened to the ten problems in
the years since they had been posed. The problem about Toeplitz operators was
still unsolved, but Halmos’s question had stimulated good work on the problem.
Several papers had been written with partial results providing strong evidence
that the question above had an affirmative answer.

In the spring of 1983 I believed that the time was right for a breakthrough
on this problem, so I organized a seminar at Michigan State University to focus on
this problem. We went through every paper on this topic, including a first draft
of a manuscript by Shun-Hua Sun. Sun claimed to have proved that no nonana-
lytic Toeplitz operator can lie in a certain important subclass of the subnormal
operators. There was a uncorrectable error in the proof (and the result is false),
but Sun had introduced clever new ideas to the subject. His proof worked for all
but a single family of operators, and thus this particular family was an excellent
candidate for a counter-example that no one expected to exist.

The Spring quarter ended and I sent a copy of my seminar notes to Carl
Cowen at Purdue University. When I returned from a long trip abroad, I found a
letter from Cowen, who had amazingly answered Halmos’s question (negatively!)
by proving that each operator in the suspicious family singled out by Sun’s work
is a subnormal Toeplitz operator that is neither normal nor analytic. Here is what
Cowen had proved, where we are abusing notation and thinking of f , which starts
out as a function on D, as also a function on ∂D (just extend f by continuity to
∂D):

Theorem 7. Suppose b ∈ (0, 1). Let f be a one-to-one analytic mapping of the
unit disk onto the ellipse with vertices 1

1+b , −11+b , i
1−b , and −i

1−b . Then the Toeplitz

operator with symbol f + bf̄ is subnormal but is neither normal nor analytic.

I told my PhD student John Long about Cowen’s wonderful result, although I
did not show Long the proof. Within a week, Long came back to me with a beautiful
and deep proof that was shorter and more natural than Cowen’s. Because there
was now no reason to publish Cowen’s original proof, Cowen and Long decided to
publish Long’s proof in a joint paper [6]. Thus the contributions to that paper are
as follows: Cowen first proved the result and provided the crucial knowledge of the
correct answer, including the idea of using ellipses; the proof in the paper is due
to Long. At no time did the two authors actually work together.
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The Symbol Map

Paul Halmos’s second major paper on Toeplitz operators was a joint effort with
José Barŕıa that was published in 1982 [4]. The main object of investigation is the
Toeplitz algebra T , which is defined to be the norm-closed algebra generated by
all the Toeplitz operators on H2. The most important tool in the study of T is
what is called the symbol map ϕ, as described in the next theorem.

Theorem 8. There exists a unique multiplicative linear map ϕ : T → L∞(∂D, σ)
such that ϕ(Tf ) = f for every f ∈ L∞(∂D, σ).

The surprising point here is the existence of a multiplicative map on T such that
ϕ(Tf ) = f for every f ∈ L∞(∂D, σ). Thus

ϕ(TfTg) = ϕ(Tf )ϕ(Tg) = fg

for all f, g ∈ L∞(∂D, σ). The symbol map ϕ was discovered and exploited by
Douglas ([7], Chapter 7).

The symbol map ϕ was a magical and mysterious homomorphism to me
until I read the Barŕıa/Halmos paper, where the authors actually construct ϕ (as
opposed to Douglas’s more abstract proof).

Here is how the Barŕıa/Halmos paper constructs ϕ: The authors prove that
if S ∈ T , then S is an asymptotic Toeplitz operator in the sense that in the matrix
of S, the limit along each line parallel to the main diagonal exists. Consider a
Toeplitz matrix in which each line parallel to the main diagonal contains the limit
of the corresponding line from the matrix of S. The nature of the construction
ensures that this Toeplitz matrix represents a bounded operator and thus is the
matrix of Tf for some f ∈ L∞(∂D, σ). Starting with S ∈ T , we have now obtained
a function f ∈ L∞(∂D, σ). Define ϕ(S) to be f . Then ϕ is the symbol map whose
existence is guaranteed by Theorem 8.

A more formal statement of the Barŕıa/Halmos result is given below. Here we
are using ϕ as in Theorem 8. Thus the point here is that we can actually construct
the symbol map ϕ.

Theorem 9. Suppose S ∈ T and the matrix of S with respect to the standard basis
of H2 is (bj,k)∞j,k=0. Then for each integer n, the limit (as j →∞) of bn+j,j exists.
Let

an = lim
j→∞

bn+j,j

and let

f =

∞∑
n=−∞

anz
n,

where the infinite sum converges in the norm of L2(∂D, σ). Then f ∈ L∞(∂D, σ)
and ϕ(S) = f .

The Barŕıa/Halmos construction of ϕ is completely different in spirit and
technique from Douglas’s existence proof. I knew Douglas’s proof well—an idea
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that I got from reading it was a key ingredient in my first published paper [2].
But until the Barŕıa/Halmos paper came along, I never guessed that ϕ could be
explicitly constructed or that so much additional insight could be squeezed from
a new approach.

Compact Semi-commutators

An operator of the form TfTg − Tfg is called a semi-commutator. As discussed
earlier, the Brown/Halmos paper gave a necessary and sufficient condition on
functions f, g ∈ L∞(∂D, σ) for the semi-commutator TfTg − Tfg to equal 0. One
of the fruitful strands of generalization stemming from this result involves asking
for TfTg − Tfg to be small in some sense. In this context, the most useful way an
operator can be small is to be compact.

In 1978 Sun-Yung Alice Chang, Don Sarason, and I published a paper [3]
giving a sufficient condition on functions f, g ∈ L∞(∂D, σ) for TfTg − Tfg to be
compact. This condition included all previously known sufficient conditions. To
describe this condition, for g ∈ L∞(∂D, σ) let H∞[g] denote the smallest norm-
closed subalgebra of L∞(∂D, σ) containing H∞ and g. The Axler/Chang/Sarason
paper showed that if f, g ∈ L∞(∂D, σ) and

H∞[f̄ ] ∩H∞[g] ⊂ H∞ + C(∂D),

then TfTg − Tfg is compact.
We could prove that the condition above was necessary as well as sufficient if

we put some additional hypotheses on f and g. We conjectured that the condition
above was necessary without the additional hypotheses, but we were unable to
prove so.

A brilliant proof verifying the conjecture was published by Alexander Volberg
[18] in 1982. Combining Volberg’s result of the necessity with the previous result
of the sufficiency gives the following theorem.

Theorem 10. Suppose f, g ∈ L∞(∂D, σ). Then TfTg − Tfg is compact if and only
if H∞[f̄ ] ∩H∞[g] ⊂ H∞ + C(∂D).

A key step in Volberg’s proof of the necessity uses the following specific case
of a theorem about interpolation of operators that had been proved 26 years earlier
by Elias Stein ([17], Theorem 2).

Theorem 11. Let dµ be a positive measure on a set X, and let v and w be positive
measurable functions on X. Suppose S is a linear operator on both L2(vdµ) and
L2(wdµ), with norms ‖S‖v and ‖S‖w, respectively. If ‖S‖√vw denotes the norm

of S on L2(
√
vwdµ), then

‖S‖√vw ≤
√
‖S‖v ‖S‖w.

When I received a preprint of Volberg’s paper in Spring 1981 I told Paul
Halmos about the special interpolation result that it used. Within a few days
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Halmos surprised me by producing a clean Hilbert space proof of the interpolation
result above that Volberg had needed. Halmos’s proof (for the special case of
Theorem 11) was much nicer than Stein’s original proof. With his typical efficiency,
Halmos put his inspiration into publishable form quickly and submitted the paper
to the journal to which Volberg has submitted his article. I ended up as the referee
for both papers. It was an unusual pleasure to see how a tool used in one paper
had led to an improved proof of the tool. Halmos’s short and delightful paper [13]
containing his proof of the interpolation result was published in the same issue of
the Journal of Operator Theory as Volberg’s paper.

Remembering Paul Halmos

I would like to close with a few words about my personal debt to Paul Halmos.
Paul is my mathematical grandfather. His articles and books have been an impor-
tant part of my mathematical heritage. I first met Paul for a few seconds when I
was a graduate student, and then for a few minutes when I gave my first confer-
ence talk right after receiving my PhD. Four years later I got to know Paul well
when I spent a year’s leave at Indiana University. Later when Paul became Editor
of the American Mathematical Monthly, he selected me as one of the Associate
Editors. Still later Paul and I spent several years working together as members
of the Editorial Board for the Springer series Graduate Texts in Mathematics,
Undergraduate Texts in Mathematics, and Universitext.

Paul is one of the three people who showed me how to be a mathematician
(the other two are my wonderful thesis advisor Don Sarason, who was Paul’s
student, and Allen Shields). Watching Paul, I saw how an expert proved a theorem,
gave a talk, wrote a paper, composed a referee’s report, edited a journal, and edited
a book series. I’m extremely lucky to have had such an extraordinary model.
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